

General Certificate of Education Advanced Subsidiary Examination June 2011

Mathematics

Unit Further Pure 1

Friday 20 May $2011 \quad 1.30$ pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1
A curve passes through the point $(2,3)$ and satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\sqrt{2+x}}
$$

Starting at the point $(2,3)$, use a step-by-step method with a step length of 0.5 to estimate the value of y at $x=3$. Give your answer to four decimal places.

2 The equation

$$
4 x^{2}+6 x+3=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Show that $\alpha^{2}+\beta^{2}=\frac{3}{4}$.
(c) Find an equation, with integer coefficients, which has roots

$$
3 \alpha-\beta \text { and } 3 \beta-\alpha
$$

3 It is given that $z=x+\mathrm{i} y$, where x and y are real.
(a) Find, in terms of x and y, the real and imaginary parts of

$$
(z-i)\left(z^{*}-\mathrm{i}\right)
$$

(3 marks)
(b) Given that

$$
(z-\mathrm{i})\left(z^{*}-\mathrm{i}\right)=24-8 \mathrm{i}
$$

find the two possible values of z.
$4 \quad$ The variables x and Y, where $Y=\log _{10} y$, are related by the equation

$$
Y=m x+c
$$

where m and c are constants.
(a) Given that $y=a b^{x}$, express a in terms of c, and b in terms of m.
(b) It is given that $y=12$ when $x=1$ and that $y=27$ when $x=5$.

On the diagram below, draw a linear graph relating x and Y.
(c) Use your graph to estimate, to two significant figures:
(i) the value of y when $x=3$;
(ii) the value of a.

5 (a) Find the general solution of the equation

$$
\cos \left(3 x-\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2}
$$

giving your answer in terms of π.
(b) Use your general solution to find the smallest solution of this equation which is greater than 5π.

6 (a) Expand $(5+h)^{3}$.
(b) A curve has equation $y=x^{3}-x^{2}$.
(i) Find the gradient of the line passing through the point $(5,100)$ and the point on the curve for which $x=5+h$. Give your answer in the form

$$
p+q h+r h^{2}
$$

where p, q and r are integers.
(ii) Show how the answer to part (b)(i) can be used to find the gradient of the curve at the point $(5,100)$. State the value of this gradient.
(2 marks)
$7 \quad$ The matrix \mathbf{A} is defined by

$$
\mathbf{A}=\left[\begin{array}{rr}
-1 & -\sqrt{3} \\
\sqrt{3} & -1
\end{array}\right]
$$

(a) (i) Calculate the matrix \mathbf{A}^{2}.
(ii) Show that $\mathbf{A}^{3}=k \mathbf{I}$, where k is an integer and \mathbf{I} is the 2×2 identity matrix.
(b) Describe the single geometrical transformation, or combination of two geometrical transformations, corresponding to each of the matrices:
(i) \mathbf{A}^{3};
(ii) A .
$8 \quad$ A curve has equation $y=\frac{1}{x^{2}-4}$.
(a) (i) Write down the equations of the three asymptotes of the curve.
(ii) Sketch the curve, showing the coordinates of any points of intersection with the coordinate axes.
(b) Hence, or otherwise, solve the inequality

$$
\begin{equation*}
\frac{1}{x^{2}-4}<-2 \tag{3marks}
\end{equation*}
$$

$9 \quad$ The diagram shows a parabola P which has equation $y=\frac{1}{8} x^{2}$, and another parabola Q which is the image of P under a reflection in the line $y=x$.

The parabolas P and Q intersect at the origin and again at a point A.
The line L is a tangent to both P and Q.

(a) (i) Find the coordinates of the point A.
(ii) Write down an equation for Q.
(iii) Give a reason why the gradient of L must be -1 .
(b) (i) Given that the line $y=-x+c$ intersects the parabola P at two distinct points, show that

$$
\begin{equation*}
c>-2 \tag{3marks}
\end{equation*}
$$

(ii) Find the coordinates of the points at which the line L touches the parabolas P and Q. (No credit will be given for solutions based on differentiation.)

END OF QUESTIONS

