

General Certificate of Education Advanced Subsidiary Examination June 2011

Mathematics

MFP1

Unit Further Pure 1

Friday 20 May 2011 1.30 pm to 3.00 pm

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

• 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer **all** questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

1

A curve passes through the point (2, 3) and satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{2+x}}$$

Starting at the point (2, 3), use a step-by-step method with a step length of 0.5 to estimate the value of y at x = 3. Give your answer to four decimal places.

(5 marks)

2 The equation

$$4x^2 + 6x + 3 = 0$$

has roots α and β .

- (a) Write down the values of $\alpha + \beta$ and $\alpha\beta$. (2 marks)
- **(b)** Show that $\alpha^2 + \beta^2 = \frac{3}{4}$. (2 marks)
- (c) Find an equation, with integer coefficients, which has roots

$$3\alpha - \beta$$
 and $3\beta - \alpha$ (5 marks)

3 It is given that z = x + iy, where x and y are real.

(a) Find, in terms of x and y, the real and imaginary parts of

$$(z - i)(z^* - i)$$
 (3 marks)

(b) Given that

$$(z - i)(z^* - i) = 24 - 8i$$

find the two possible values of z.

(4 marks)

4

3

The variables x and Y, where $Y = \log_{10} y$, are related by the equation

Y = mx + c

where m and c are constants.

(a)	Given that $y = ab^x$, express	s a in terms of c , and b in terms of m .	(3 marks)
-----	---------------------------------	---	-----------

(b) It is given that
$$y = 12$$
 when $x = 1$ and that $y = 27$ when $x = 5$.
On the diagram below, draw a linear graph relating x and Y. (3 marks)

- (i) the value of y when x = 3; (2 marks)
- (ii) the value of *a*.

5 (a) Find the general solution of the equation

$$\cos\left(3x - \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

giving your answer in terms of π .

(5 marks)

(2 marks)

(b) Use your general solution to find the smallest solution of this equation which is greater than 5π . (2 marks)

Turn over ▶

6 (a)

P39432/Jun11/MFP1

- Expand $(5+h)^3$. (1 mark)
- (b) A curve has equation $y = x^3 x^2$.
 - (i) Find the gradient of the line passing through the point (5, 100) and the point on the curve for which x = 5 + h. Give your answer in the form

$$p + qh + rh^2$$

where p, q and r are integers.

- (ii) Show how the answer to part (b)(i) can be used to find the gradient of the curve at the point (5, 100). State the value of this gradient. (2 marks)
- 7 The matrix A is defined by

$$\mathbf{A} = \begin{bmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix}$$

- (a) (i) Calculate the matrix A².
 (ii) Show that A³ = kI, where k is an integer and I is the 2 × 2 identity matrix.
- (b) Describe the single geometrical transformation, or combination of two geometrical transformations, corresponding to each of the matrices:
 - (i) A^3 ; (2 marks)
 - (ii) A.

8 A curve has equation $y = \frac{1}{x^2 - 4}$.

- (a) (i) Write down the equations of the three asymptotes of the curve. (3 marks)
 - (ii) Sketch the curve, showing the coordinates of any points of intersection with the coordinate axes. (4 marks)
- (b) Hence, or otherwise, solve the inequality

$$\frac{1}{x^2 - 4} < -2 \tag{3 marks}$$

(4 marks)

(2 marks)

. (2 marks)

(3 marks)

The parabolas P and Q intersect at the origin and again at a point A.

The line L is a tangent to both P and Q.

(a) (i)	Find the coordinates of the point A.	(2 marks)
(ii)	Write down an equation for Q .	(1 mark)
(iii)	Give a reason why the gradient of L must be -1 .	(1 mark)

(b) (i) Given that the line y = -x + c intersects the parabola P at two distinct points, show that

$$c > -2$$
 (3 marks)

(ii) Find the coordinates of the points at which the line L touches the parabolas P and Q.(No credit will be given for solutions based on differentiation.) (4 marks)

END OF QUESTIONS

Copyright $\ensuremath{\mathbb{C}}$ 2011 AQA and its licensors. All rights reserved.

